anti-KCNJ2 Antibody from antibodies-online

Supplier Page

Supplier Page from
antibodies-online for
anti-KCNJ2 Antibody

Description

Product Characteristics: FUNCTION: Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium, as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium or cesium. Tissue specificity: Heart, brain, placenta, lung, skeletal muscle, and kidney. Diffusely distributed throughout the brain. Subcellular location: Membrane, Multi-pass membrane protein. Involvement in disease: Defects in KCNJ2 are the cause of long QT syndrome type 7 (LQT7), also called Andersen syndrome or Andersen cardiodysrhythmic periodic paralysis. Long QT syndromes are heart disorders characterized by a prolonged QT interval on the ECG and polymorphic ventricular arrhythmias. They cause syncope and sudden death in response to excercise or emotional stress. LQT7 manifests itself as a clinical triad consisting of potassium-sensitive periodic paralysis, ventricular ectopy and dysmorphic features. Defects in KCNJ2 are the cause of short QT syndrome type 3 (SQT3). Short QT syndromes are heart disorders characterized by idiopathic persistently and uniformly short QT interval on ECG in the absence of structural heart disease in affected individuals. They cause syncope and sudden death. SQT3 has a unique ECG phenotype characterized by asymmetrical T waves.
Synonyms: Inward rectifier potassium channel 2, Potassium channel, inwardly rectifying subfamily J member 2, Inward rectifier K(+) channel Kir2.1, Cardiac inward rectifier potassium channel, IRK1
Target Information: Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Mutations in this gene have been associated with Andersen syndrome, which is characterized by periodic paralysis, cardiac arrhythmias, and dysmorphic features. [provided by RefSeq, Jul 2008]